36 research outputs found

    Performance Enhancement of Hyperspectral Semantic Segmentation Leveraging Ensemble Networks

    Get PDF
    Hyperspectral image (HSI) semantic segmentation is a growing field within computer vision, machine learning, and forestry. Due to the separate nature of these communities, research applying deep learning techniques to ground-type semantic segmentation needs improvement, along with working to bring the research and expectations of these three communities together. Semantic segmentation consists of classifying individual pixels within the image based on the features present. Many issues need to be resolved in HSI semantic segmentation including data preprocessing, feature reduction, semantic segmentation techniques, and adversarial training. In this thesis, we tackle these challenges by employing ensemble methods for HSI semantic segmentation. Deep neural networks (DNNs) for classification tasks have been employed in HSI semantic segmentation with great success. The ensemble method in traditional classification is often used to increase performance, but research into applying it to semantic segmentation in HSIs is relatively new. Instead of using a single network approach to classification, the ensemble method employs multiple networks to improve performance. Research into ensemble methods in HSI has seen increased accuracy, but often has higher computational complexity and relies on expensive preprocessing techniques. To showcase the performance increase the ensemble method has on semantic segmentation, we propose the novel flagship model Clustering Ensemble U-Net (CEU-Net). In CEU-Net we (1) use a bagging ensemble technique to reduce the computational complexity, (2) utilize clustering on class labels as an intelligent method of delineating which data goes to each network, thereby making each sub-network an expert on a particular cluster, and (3) implement with or without patching for better data flexibility. It is shown that CEU-Net outperforms existing hyperspectral semantic segmentation methods, achieving better performance with and without patching compared to baseline models. Semantic segmentation models are vulnerable to adversarial attacks and need adversarial training to counteract them. Adversarial attacks are often intelligent attacks that use the knowledge of a trained classifier to create imperceptible perturbations to hurt classification accuracy. Traditional approaches to adversarial robustness focus on training or retraining a single network on attacked data, however, in the presence of multiple attacks these approaches decrease the performance compared to networks trained individually on each attack. To combat adversarial attacks in HSI semantic segmentation, we propose the Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on attack type detection and adversarial robustness under a unified model to preserve per data-type weight optimally while making the overall network robust. In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble sub-network. The ensemble and discriminator networks are trained together using a unified novel loss function to share information between each network. Our approach allows for the presence of multiple attacks mixed together while also labeling attack types during testing. In this thesis, we experimentally show that ADE-Net outperforms the baseline, which is a single network adversarially trained under a mix of multiple attacks, for popular HSI datasets

    Improving Hyperspectral Adversarial Robustness Under Multiple Attacks

    Full text link
    Semantic segmentation models classifying hyperspectral images (HSI) are vulnerable to adversarial examples. Traditional approaches to adversarial robustness focus on training or retraining a single network on attacked data, however, in the presence of multiple attacks these approaches decrease in performance compared to networks trained individually on each attack. To combat this issue we propose an Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on attack type detection and adversarial robustness under a unified model to preserve per data-type weight optimally while robustifiying the overall network. In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble network.Comment: 6 pages, 2 figures, 1 table, 1 algorith

    Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease

    Get PDF
    INTRODUCTION: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. METHODS: We measured longitudinal changes in plasma amyloid-beta (Aβ)42/40 ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with Aβ and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. RESULTS: Aβ42/40 ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) ε4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both Aβ-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. DISCUSSION: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD. HIGHLIGHTS: Longitudinal increase of plasma pTau181 and glial fibrillary acidic protein (GFAP) can be measured in the preclinical phase of AD. Apolipoprotein E ε4 carriers experience faster increase in plasma pTau181 over time than non-carriers. Female sex showed accelerated increase in plasma GFAP over time compared to males. Aβ42/40 and pTau231 values are already abnormal at baseline in individuals with both amyloid and tau PET burden

    Potential Utility of Plasma P-Tau and Neurofilament Light Chain as Surrogate Biomarkers for Preventive Clinical Trials

    Get PDF
    OBJECTIVE: To test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively unimpaired (CU) populations. METHODS: We estimated the sample size needed to test a 25% drug effect with 80% of power at a 0.05 level on reducing changes in plasma markers in CU participants from Alzheimer's Disease Neuroimaging Initiative database. RESULTS: We included 257 CU individuals (45.5% males; mean age = 73 [6] years; 32% β-amyloid [Aβ] positive). Changes in plasma NfL were associated with age, whereas changes in plasma p-tau181 with progression to amnestic mild cognitive impairment. Clinical trials using p-tau181 and NfL would require 85% and 63% smaller sample sizes, respectively, for a 24-month than a 12-month follow-up. A population enrichment strategy using intermediate levels of Aβ PET (Centiloid 20-40) further reduced the sample size of the 24-month clinical trial using p-tau181 (73%) and NfL (59%) as a surrogate. DISCUSSION: Plasma p-tau181/NfL can potentially be used to monitor large-scale population interventions in CU individuals. The enrollment of CU with intermediate Aβ levels constitutes the alternative with the largest effect size and most cost-effective for trials testing drug effect on changes in plasma p-tau181 and NfL

    Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography

    Get PDF
    IMPORTANCE: The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles. OBJECTIVE: To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET). DESIGN, SETTING, AND PARTICIPANTS: This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded. EXPOSURES: Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay. MAIN OUTCOMES AND MEASURES: Associations between p-tau biomarkers with amyloid PET and tau PET. RESULTS: A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P = .006; p-tau217 difference, 11%; 95% CI, 3%-20%; P = .003; p-tau231 difference, 15%; 95% CI, 5%-22%; P < .001; p-tau235 difference, 9%; 95% CI, 1%-19%; P = .02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P = .02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P = .02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P = .009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P = .02) in independent cohorts. CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: reexamining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: re-examining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    Individual recovery expectations and prognosis of outcomes in non‐specific low back pain:prognostic factor review

    Get PDF
    BACKGROUND: Low back pain is costly and disabling. Prognostic factor evidence can help healthcare providers and patients understand likely prognosis, inform the development of prediction models to identify subgroups, and may inform new treatment strategies. Recent studies have suggested that people who have poor expectations for recovery experience more back pain disability, but study results have differed. OBJECTIVES: To synthesise evidence on the association between recovery expectations and disability outcomes in adults with low back pain, and explore sources of heterogeneity. SEARCH METHODS: The search strategy included broad and focused electronic searches of MEDLINE, Embase, CINAHL, and PsycINFO to 12 March 2019, reference list searches of relevant reviews and included studies, and citation searches of relevant expectation measurement tools. SELECTION CRITERIA: We included low back pain prognosis studies from any setting assessing general, self-efficacy, and treatment expectations (measured dichotomously and continuously on a 0 - 10 scale), and their association with work participation, clinically important recovery, functional limitations, or pain intensity outcomes at short (3 months), medium (6 months), long (12 months), and very long (> 16 months) follow-up. DATA COLLECTION AND ANALYSIS: We extracted study characteristics and all reported estimates of unadjusted and adjusted associations between expectations and related outcomes. Two review authors independently assessed risks of bias using the Quality in Prognosis Studies (QUIPS) tool. We conducted narrative syntheses and meta-analyses when appropriate unadjusted or adjusted estimates were available. Two review authors independently graded and reported the overall quality of evidence. MAIN RESULTS: We screened 4635 unique citations to include 60 studies (30,530 participants). Thirty-five studies were conducted in Europe, 21 in North America, and four in Australia. Study populations were mostly chronic (37%), from healthcare (62%) or occupational settings (26%). General expectation was the most common type of recovery expectation measured (70%); 16 studies measured more than one type of expectation. Usable data for syntheses were available for 52 studies (87% of studies; 28,885 participants). We found moderate-quality evidence that positive recovery expectations are strongly associated with better work participation (narrative synthesis: 21 studies; meta-analysis: 12 studies, 4777 participants: odds ratio (OR) 2.43, 95% confidence interval (CI) 1.64 to 3.62), and low-quality evidence for clinically important recovery outcomes (narrative synthesis: 12 studies; meta-analysis: 5 studies, 1820 participants: OR 1.89, 95% CI 1.49 to 2.41), both at follow-up times closest to 12 months, using adjusted data. The association of recovery expectations with other outcomes of interest, including functional limitations (narrative synthesis: 10 studies; meta-analysis: 3 studies, 1435 participants: OR 1.40, 95% CI 0.85 to 2.31) and pain intensity (narrative synthesis: 9 studies; meta-analysis: 3 studies, 1555 participants: OR 1.15, 95% CI 1.08 to 1.23) outcomes at follow-up times closest to 12 months using adjusted data, is less certain, achieving very low- and low-quality evidence, respectively. No studies reported statistically significant or clinically important negative associations between recovery expectations and any low back pain outcome. AUTHORS' CONCLUSIONS: We found that individual recovery expectations are probably strongly associated with future work participation (moderate-quality evidence) and may be associated with clinically important recovery outcomes (low-quality evidence). The association of recovery expectations with other outcomes of interest is less certain. Our findings suggest that recovery expectations should be considered in future studies, to improve prognosis and management of low back pain

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
    corecore